ZEB Consulting Services™ FAQ

Transit electrification is a complex process and can be challenging without proper planning. Engaging CUTRIC to understand your transit agency’s needs and goals is a great first step.

CUTRIC was commissioned by Natural Resources Canada (NRCan) to develop a process map with ten essential steps for zero-emission bus implementation planning. The plan walks you through a step by step guide, starting with strategic analysis, followed by feasibility analysis, cost analysis, benefit analysis, risk analysis, need analysis, demonstration trial, procurement and empirical data analytics. Further details on the process map can be found here.

Predictive performance modelling using RoutetΣ.i™ 3.0 or RoutΣ.i™ Lite can help you understand the suitability of various Zero Emission Bus (ZEB) technologies specific to your respective transit systems.CUTRIC’s modelling tools enable a transit agency to understand the ease of decarbonization of various blocks/routes, cost savings, GHG emission reductions and many more important variables.

High temperature amplitudes can lead to an increased battery energy consumption rendering specific blocks/routes unsuccessful in electrification with a 1-to-1 replacement ratio of conventional buses. RoutΣ.i™ 3.0 and RoutΣ.i™ Lite predictive performance modelling consider a spectrum of best to worst case scenarios to help a transit agency understand the operational patterns under various energy intensive situations.

The frequency of starting and stopping as well as the topographical conditions have a direct impact on the energy consumption of the vehicles. CUTRIC relies on a detailed Geographical Information System (GIS) analysis to capture a variety of physical features. The elevation profile is captured along with all the traffic impediments such as stops signs, pedestrian crossings, speed limits and. RoutΣ.i™’s deep dive analysis is vital to ensure the most accurate simulation for each route/block in the system.

Calculating electric bus cost savings is not as simple as one might imagine. CUTRIC considers dynamic operational costs along with capital expenditure to engage in detailed return on investment (ROI) calculations for transit agencies. The RoutΣ.i™ 3.0 modelling tool can estimate the operational cost savings of electric buses in relation to conventional vehicles considering local and regional specific markets and regulations.

No single industrial activity is completely clean. Although electric buses do not have any tailpipe emissions, the production of the electricity or hydrogen fuel required to operate electric buses incurs the emission of GHGs. CUTRIC works with full life cycle assessments (LCA) of energy resources while calculating the GHG emission incurred by the production, transportation and operation of fossil fuels and energy/fuel for ZEBs. BEBs and FCEBs can be very clean when the electricity or hydrogen used comes from clean and renewable sources. For compressed natural gas (CNG) buses running with renewable natural gas (RNG), several methods of production of their fuel with different levels of carbon intensity exist. A precise answer to this question depends heavily on the local properties of the local power grid being considered.

The RNG acronym stands for Renewable Natural Gas. It is produced by the decomposition of organic matter in a biological process called anaerobic digestion. RNG is usually produced by using waste from landfills, agricultural residues and water treatment plants. The fuel can have a negative net carbon intensity because methane has an elevated potential for causing global warming. Thus, capturing methane that would otherwise be emitted to the atmosphere through other economic activities has a profound positive impact on the environment.

It would be wise for transit agencies to adopt a phased approach, beginning with decarbonizing the routes identified as optimal, establish a learning model, and ramp up the procurement and operation. Predictive performance modelling and rollout planning using RoutΣ.i™ 3.0 provides a transit agency with an electrification plan identifying the exact routes to begin with and a detailed step by step guide to reach full electrification.

Generally, it is not possible to fully electrify an entire transit system with a 1:1 replacement ratio in relation to conventional buses. Block re-design and schedule optimization could be instrumental in keeping the spare ratio low while achieving a high level of success. Predictive modelling and rollout planning using RoutΣ.i™ 3.0 can help transit agencies understand the block modifications that would be required.

Although the answer to this question is transit-system-specific, usually a good portion of blocks can be electrified without on-route chargers. A complementary solution such as on-route charging, hydrogen fuel cell electric buses or CNG buses running with RNG may be required to transition an entire system to zero emission buses. CUTRIC’s RoutΣ.i™ 3.0 tool has the capability of advising on the selection of the technology that may be more appropriate locally.

Get in touch with us